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» Background. Why stochastic models?
» Discrete random walk model (DRW). Shortcomings

» Continuous random walk (CRW) based on the Langevin equation
» Standard Langevin equation
» Non-dimensional Langevin equation

» Sample results of the CRW model
» Isothermal flows
> Flows with thermal gradients (active thermophoresis)

» Concluding remarks
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Particles-turbulence: applications

> Particle-turbulence interactions play a crucial role in wide range of
applications
> Atmospheric dispersion of pollutants
Sediment transport in rivers
Drug delivery in human airways
Combustion
Fouling in compressor and turbine blades
Chemical pulping
Nuclear fission products transport

YV V V VYV V V

> “Turbulence has a strong influence on plankton contact rate, which is a
crucial parameter for plankton ecology”. ©
Recent paper in J. Marine Systems
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Background

» CFD method increasingly successful in prediction of turbulent flows in
general geometries

» Particle dispersion in CFD codes predicted using:

> Eulerian two-fluid methods
» Particles regarded as continuous phase with own averaged equations (mass,
momentum, etc)
» Better suited for denser suspensions when particle-particle interactions important
» Main challenges: defining interphasial exchange terms, boundary conditions

» Lagrangian particle tracking (LPT)
» One solves first for the continuous phase (Eulerian)
» Then: one follows paths of a “large” sample of particles by integration of Newton’s
2" | aw
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Lagrangian methods: Pros & Cons

»>Pros:
» Rigorous and intuitive inclusion of all relevant forces on particle
(e.g. drag, gravity, thermophoretic force, etc)
» Rigorous and intuitive treatment of boundary conditions
» More appropriate for dispersed flows, with low particle loading

»Cons:

» Computational expense: Necessary to track a large number of particles
until stationary statistics are achieved
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Background

» CFD with LPT successful in predicting laminar flows

> In turbulent flows, DNS and LES coupled to LPT offer most rigorous way of

treating particle dispersion in Euler/Lagrange frameworks. However:
» Very time consuming

» Difficult (sometimes impossible) to apply in general geometries
> Want quick answers with “good enough” accuracy using today’s CFD codes

> In past, CFD-LPT treatment in turbulent flows has showed unsatisfactory
accuracy due to:
> Inappropriate modeling of turbulence seen by particles
» Rather rough assumptions e.g. turbulence isotropic in whole domain
» Recent advances in stochastic models and coupling to CFD codes offer hope for
a good compromise between accuracy and computer expense
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Particle-Turbulence interactions in LPT

» Supposing drag is the only significant force on the particle. The particle path is
extracted from:

du
dt

18u - Re Re:ppdp\u ~U,|

—=F,(U-U)), FD:ppd2 ° 24 7

> A major issue in Lagrangian particle tracking: modeling fluid turbulence.

U=U+u . Tobe

/ modeled

CFD

» RANS turbulent models in CFD produce averaged fluid field quantities

» How to extract instantaneous fields from averaged fields? Stochastic models
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Random Walk Models: preview

> Premise;

> A random walk model consisting of
a large number of statistically
independent steps is suitable to
represent the chaotic nature of
turbulent diffusion

» The mean flow equations solved

analytically/numerically (CFD-
RANS)

» Turbulence modeled with a random
walk model
» Discrete Random Walk
» Continuous Random Walk
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Discrete Random Walk (DRW) Model

> Also known as Eddy Interaction Model (EIM). Due to Gosman et al., 1983

> Particle interacts with turbulence in “Discrete Random Walks”
> Particle is “trapped” by an eddy during an “eddy lifetime”

K
Te = 2TL = ZCL_
g
» During the lifetime of the eddy:
> The mean fluid velocities seen by the particle are those of the fluid
> The fluctuating fluid components are randomly distributed Gaussian variables whose rms
value are equal and deduced from the turbulent kinetic energy k:

Vu? =2 = w? =+2k/3

. T2
> The instantaneous fluid velocity seen by a particle is: Ui = A iV Ui
> A's are Gaussian random variables with 0 mean and standard deviation 1
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Discrete Random Walk (DRW) Model

> Integrate trajectory until eddy life is over

> When the eddy lifetime is over, generate another eddy with random rms of velocity

> The particle trajectory is determined by the Lagrangian tracking

dxIO

dt b

du
p — —
m P ? - f o fDl’ag + fGraVity + fthermophoresis + f'lft + ...

> In 3D: trajectory obtained by integrating 6 coupled ODE’s

» Tacking is continued until particle is hits the wall or leaves domain
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Typical Discrete Random Walk Trajectory
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Shortcomings of original DRW model

» Many practical flows can be approximated as having isotropic turbulence
In the bulk

» However: turbulence is very anisotropic in boundary layers

» In presence of walls, particle deposition dictated by phenomena in
boundary layer

» Thus: Original DRW prediction of deposition is poor even in simple
geometries (always strong over-prediction of deposition)

» Better treatment of boundary layer effects is required because of:
> Anisotropy
> Different time scales
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Turbulent velocity scales in boundary layer

|- 1 _
2
O
O 0.1- .
o DNS fits in channel
; flows at Re=2100.
0.01 - (Courtesy Marchioli &
= normal Soldati, 2007)
" direction
QL 1E-3-
c
i)
-
5] 1E-4 -
£
QO
1E'5 T T T I |
1E-3 0.01 0.1 1 10 100

: ) : +
Dimensionless wall distance y , -

EPFL_05_2008, DB42, 28.05.2008, 13



PAUL SCHERRER INSTITUT

] Laboratory for Thermal Hydraulics
Nuclear Energy and Safety

Improvement of DRW: boundary layer model

»Keep default model as is as long as particle in the bulk (y* >100)

> If particle in boundary layer (y* < 100) introduce rms values of gas
velocities obtained from curve fits of DNS data in channel flow:

o, =ut=— 24y (streamwise direction)
1+0.0239(y*)*
= 0.0116-(y*)? . L
=\Vv?® = -u
o, =\ 150203,y +0.00140(y" "™ (normal direction to wall)
— 0.19-y* . _ L
=Jw? = -u
o 1+0.0361(y )2 (spanwise direction)

* T
with the friction velocity U = ?W

EPFL_05_2008, DB42, 28.05.2008, 14



PAUL SCHERRER INSTITUT
] Laboratory for Thermal Hydraulics
Nuclear Energy and Safety

Times scales

» Lagrangian time scale of fluid particle defined as:

U; (t)Ui (t + Z') ) Computed from LPT-
RUi (T) = ) DNS of fluid particles &
U; (t)Ui (t) ensemble averaging

7,: typical time before particle loses
memory of its history. Velocities are

A

T = jo Ry (7)dz

-Correlated in time intervals O(z,)

-Uncorrelated for greater time intervals

EPFL_05_2008, DB42, 28.05.2008, 15
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Times scales

» From Bocksell & Loth (2006): LPT tracking of fluid particles in DNS
du

channel flow done by integration of
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Times scales, fits

» DNS computed scales reasonably approximated by wall function
fits given by Kallio & Reeks (1989)

7} =7.122+0.5731-y* -0.00129 y* for 5.0 <y* <100
T|J_r =10.0 for yt <=5.0

> with the Lagrangian time scale 7; obtained from

EPFL_05_2008, DB42, 28.05.2008, 17



PAUL SCHERRER INSTITUT

] Laboratory for Thermal Hydraulics
Nuclear Energy and Safety

Results: Liu deposition in pipe experiments ('74)
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> Unphysical deposition is significantly reduced compared to original model
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Shortcomings of DRW Model

> Still suffers from inherent deficiencies:

> Modeled turbulence too synthetic

> In limit of massless particles, DRW still predicts some concentration
build-up near the wall (“spurious drift”), with as a result:

» Non-vanishing deposition velocity in the tracer limit
» Over-prediction of particle deposition when external forces are present
(e.g. thermophoresis)

> A good dispersion model should obey the “well-mixed criterion”

(Thompson 1987) i.e.:
» If initially well mixed, tracer particles should remained well mixed in the domain
as time evolves

EPFL_05_2008, DB42, 28.05.2008, 19
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» Continuous random walk (CRW) offers a more physically sound way
of modeling particle dispersion

» Fluid velocity seen by particles continuously fluctuates with time

» Original Langevin equation (ca. 1910) used by Langevin to model
Brownian velocity fluctuations

» The stochastic Langevin equation applied for homogeneous
turbulence (Obukhof 1959)

EPFL_05_2008, DB42, 28.05.2008, 20
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Langevin equation in homogeneous turbulence

> A spherical particle moves in a Eulerian flow domain according to:

du, 18u . Re

F =
dt Drag(U U ) Drag ,Opdg 24

> In turbulent flows, the carrier gas velocity: |J —|J +
» Mean velocity U from CFD. How to model the fluctuating velocity u ?

> The Langevin equation tries to mimic turbulence: ~ Radial fluid velocity v seen by particle
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Classical Langevin equation: a few words

»Langevin equation has intuitively the right physics
»Produces velocity fluctuations which are “credible”

»However:
» Equation is a postulate i.e. is not derived from first principles

» Only comparison with experiments will allow us to conclude to its usefulness or lack
thereof

» Does not obey, in its original format, the “well-mixed criterion” (Thompson, 1987). It
leads to non-physical accumulation of small particles in regions of high kinetic energy
(in laminar sublayer). Luckily one can correct for this.

EPFL_05_2008, DB42, 28.05.2008, 22
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Corrections for inhomogeneous turbulence

»Sampling from rms of velocity values introduces “spurious drift”, i.e. unphysical
migration of small, fluid-like particles from bulk to walls

» Correction: start with acceleration of fluid particle:

aizuj%
OX;

»Write velocity as mean + fluctuation: U. =U. +u.

Plugging 2" equation in first above, and averaging in time, while using continuity,
one gets after algebra:

Due to mean flow (CFD)
/ Due to inhomogeneous turbulence

/

. :U—jaui
OX;

ou,

+U;
X

EPFL_05_2008, DB42, 28.05.2008, 23



PAUL SCHERRER INSTITUT

] Laboratory for Thermal Hydraulics
Nuclear Energy and Safety

Tracer limit corrections

»Physics dictates what terms are dominant in the turbulent acceleration

»Example: DNS statistics are used to close the drift correction in boundary layers:

_, ou,
axj

»>Finally, the correction velocity in inhomogeneous turbulence:

AUy =3, At=Atou,
OXj
»With correction, “spurious drift” and deposition of tracer particles significantly
reduced. Periodic pipe flow of Re=10000

Tracer particles :O O
Injected uniformly

EPFL_05_2008, DB42, 28.05.2008, 24
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Tracer limit corrections, pipe flow, Re=10000
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Correction for arbitrary inertia

»Inertia particles “sees” different fluid turbulence than would a fluid particle

»Bocksell & Loth (2006) have extended the drift correction to inertial particles
with arbitrary Stokes number Stk (measure of particle relaxation vs flow scales)

»The correction is given by:

- 1 A T
AU, = A\Au. |, —_P
| 1_|_ Stk ( |)fIUId Stk = TL

»EXxpression has correct limits:
» Very low inertia particles (Stk=0) have correction of fluid particles

» Very high inertia particles (Stk — o0) have no correction. Particle motion and
turbulence increasingly decoupled

»EXxpression is a significant finding

EPFL_05_2008, DB42, 28.05.2008, 26
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Classical Langevin with corrections: assessment

» Classical Langevin equation with drift correction reads:

. Stochastic Dute .
Damping correction

\ S
A A

du, =9 gty o, (2 do 1y, Mgy
T, T, 1+Stk 70X,

»Yields reasonable predictions of particle dispersion in mildly inhomogeneous
flows. Well-mixed criteria met.

»Not accurate enough in strongly inhomogeneous flows such as boundary layers

EPFL_05_2008, DB42, 28.05.2008, 27
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Non-dimensional Langevin equation for boundary layers

> In recent years: many improvements to Langevin equation to tackle inhomogeneous
turbulence (e.g. pipe). Transported quantity in inhomogeneous turbulence is
> No longer u but u/c

» One writes the so-called non-dimensional Langevin equation in boundary layer:

" " i d - 2 d P U, U
d(—) = == |-—+dny; + Adt = o 1
oj ef Ti/ \ ! A= ox,  1+Stk
/ X, is wall
Damping  Stochastic Drift normal
correction

» Requires Eulerian statistics from DNS databases. Readily available.

» Can couple CFD mean flow with Langevin fluctuating flow to predict more accurately
particle motion in general flows

EPFL_05_2008, DB42, 28.05.2008, 28
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Non-dimensional Langevin equation outside boundary layer

» Outside boundary layer in bulk: turbulence roughly isotropic:

/2
O=0,=0,=03= g-k

> It can be shown (my paper Int. J. Multiphase Flows, 2008) that the drift
correction in the bulk takes the form:

lof dt 1 ok dt

dt = 5—— ~ = =
Adt=a2) ox; 1+Stk 30 ox 1+Stk

» CFD codes solve for k, so drift correction readily computed in CFD

EPFL_05_2008, DB42, 28.05.2008, 29
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Non-dimensional Langevin equation in & outside boundary layer

Outside boundary layer:

isotropic turbulence .-~ Local particle coordinate _
- Inside boundary layer:

7, 7 anisotropic
turbulence
4 {
X :
) % O-l
Computational 3
coordinate In boundary layer E ooty
. é 1E-3 G; +
1-Streamwise s ©7
g 1E-4 4
2- Wall normal £
s o o1 1 1 10
3- Span Dimensionless wall distance y+, -
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Langevin equation in inhomogeneous media

» Langevin equations:

Boundary layer Bulk
u,u
5{12J u 1 u 2 1 ok dt
1 2 o dt d(2)=—— () -dt+_[— -day +— —-
(L) = - (L) dt+ |— -dey + = (o—) rL(a) 7, e ox; 1+ Stk
o T, Oy T, X,  1+Stk
d(u—2)=—i(u—2)-dt+ i-da) +802. dt d(u_Z :_i(u_z).dt+ i.da)ZJri.ﬁ. dt
oy s L 2 ox, 1+ Stk o T, O \I T, 30 ox, 1+Stk
d(u—3)=—i(u—3)-dt+ i-da)3 d(u_3):_i u_3).dt+ i.da,3+i.i. dt
o3 T O3 7L o T, O T, 30 Oxg 1+ Stk

> Time scales t; in boundary layer: roughly equal in all directions (DNS findings by
Bocksell & Loth, 2006):

7, =10 y" <5
r; =7.122+0.5731-y* -0.00129-y* 5<y* <100

L= °£, CO =14
&

el
CO
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Algorithm of CFD model implementation

» Note: need to know “local”
coordinate system at any
particle position

» Requires knowing
location of “closest” wall
to particle at any time.

» Computation done once
at post process. Not
trivial, especially in
complex geometry.

»  Shuttling between local
and computational
coordinate systems at
every At

.
,
4
,
4
.
e
,
,
e
,
4
.
4
A 4
4

Edge of boundary layer

Local particle coordinate

>

* AV 4

Ty
Computational
coordinate
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Benchmarking model: deposition in turbulent flows

»Benchmarking of the model in isothermal flow
» Particle dispersion data from recent DNS computations (2007)

» Deposition: Comparison with particle deposition data in:
> 2D: pipe flow (Liu-Agarwal correlation)

> 3D flow
» 90° bend (Pui correlation)
» Mouth-throat geometry (Stahlhofen data fit, Grgic et al. data)

»Benchmarking of the model with active thermophoresis
» TUBA tests (Dumaz, 1993)
» Tsal tests (2004)

EPFL_05_2008, DB42, 28.05.2008, 33



PAUL SCHERRER INSTITUT

] Laboratory for Thermal Hydraulics
Nuclear Energy and Safety

Comparison with DNS database statistics

> Extensive DNS database for particle dispersion statistics assembled by
Marchioli, Soldati et al. (IIMF, 2007).

Dimensionless box sizes:
+ -
Ly =Lx(ug/v)=1885 wu.
Ly =Ly(ug/v)= 92 wu.

L+?. =Lziug/v )= 300 w.u.

Fig. 1. Particle-laden turbulent gas flow ina flat channel: computational domain.

EPFL_05_2008, DB42, 28.05.2008, 34
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Comparison with DNS database statistics

> Re =150, Re;=2100. Periodic boundary condition in 2 directions
> 6 classes of particles, with t+=0.2,1, 5, 15, 25, 125
> Database spans At*=1200, i.e. about 10 channel transit times

> Statistics:
» Particle concentration profiles at two times, t*=675,1125
> Mean and rms of axial and normal velocities between t*=742 & t*= 1192

> Investigation studies effects of: drag, lift, gravity

> Here we compare against results with drag only with particles with
17=0.2, 25, 125

> Boundary conditions: particles reflect elastically on impact with wall

EPFL_05_2008, DB42, 28.05.2008, 35
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Concentrations, tracer particles t*=0.2
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Concentrations, mid-inertia tt=15
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Concentrations, heavy particle t©=125
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Normal mean velocity and rms, tracer particle t7=0.2
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Normal mean velocity and rms, mid-inertia t+=25
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Normal mean velocity and rms, heavy particle t+=125
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Conclusions from comparison with DNS

> Model predictions of particle
dispersion surprisingly good
» Concentration
» Velocity profiles (deposition rates)

> rms values of velocity slightly
larger. Due to assumption of
Gaussin distribution for the
turbulent fluctuations.

> Every term in non-dimensional
Langevin equation counts e.g. not
including the Stokes correction

factor
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Typical heat transfer correlation graph: A=
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Deposition in pipe flow: experimental data. A= + 100-1000%!

Dimensionless deposition velocity, Fj,,,
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Pause: Why particle deposition so uncertain?

» Standard way of measuring particle deposition rates:
> Assume particle profiles are fully developed after a few 10’s of L/D’s
» Draw a sample from somewhere in the bulk, and filter it.
» Assume concentration profile is flat because “turbulence mixes up things”
(counterpart to temperature/velocity profiles in turbulent flows)

» Recent DNS show procedure above is seriously flawed:
» Preferential concentration in boundary layer. Assuming fully mixed profiles in
sampling may induce large errors!
» Very long times needed for particles to reach fully developed profiles, several
1000’s of L/D! Get different deposition rates depending on where deposition is
measured.

> Recent measurements confirm phenomena of preferential concentration

» Turbulence actually de-mixes particles!

EPFL_05_2008, DB42, 28.05.2008, 45
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Particle flow over plate. Tests Wang ‘07
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Particle concentration. Diameter= 60 um
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Particle concentration. Diameter= 200 um
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Synthetic turbulence. Particles demixing
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Model assessment vs pipe flow data, low turbulence
(Re =10000)
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Model assessment vs pipe flow data, high turbulence
(Re=50000)

+
>
2 o * .
6 01 ] () P
2 p
(<5}
>
c
2
S _
S Re= 50000
S
% ® Liu & Agarwal data
L 0014 e CRW model
5 1 —— McCoy & Hanratty Correlation
2
(b}
=
(@) ™

! ! AL
10 100

Dimensionless relaxation time t*

EPFL_05_2008, DB42, 28.05.2008, 51



PAUL SCHERRER INSTITUT

o ]

Laboratory for Thermal Hydraulics
Nuclear Energy and Safety

Model assessment: deposition in 90° bend flow
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Model assessment in 3D flows: deposition in
mouth-throat geometry (MTG)

CAD files of MTG:
Courtesy: professor W. Finlay,
University of Alberta
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Deposition in mouth-throat (Finlay et al.)

Aerosizer Mach 11

» Research by Prof. Finlay’s
group Uni. of Alberta ﬂﬂ" o Mixing Chamber
&
- /
» Deposition of DEHS Aerosol Generator Mouth and throat

geometry

particles obtained by
> Gravimetry
» Gamma scintigraphy

VACULIM pump

Flowsmeter

Fig. 1. Schematic of experimental setup.
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Quality assurance of MTG CFD computations

» Before using dispersion model, need to have confidence that the
computed flow field is free of user-induced errors

» Best practice guidelines (BPG) followed to ensure in particular:
> Grid-independence of results
» Required grid resolution in the boundary layer

» For mouth-thoat geometry
> Reynolds Stress Model (RSM, 7 equations) used
> RSM considered the “best” CFD turbulence model for general flows

EPFL_05_2008, DB42, 28.05.2008, 55
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Best Practice Guidelines for mouth-throat simulation

»Hybrid mesh: hex in boundary layer & tet elsewhere
» Fine enough to ensure y+ order 1 in wall adjacent cells (
»3 grid levels

»Second order accuracy

EPFL_05_2008, DB42, 28.05.2008, 56
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Sample velocity contours
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Flow In throat section
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Close-up view of flow In throat
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Sample velocity profiles
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Particle deposition in mouth-throat geometry

Percent deposited, 90 I/min
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Particle dispersion in presence of thermophoresis

> Thermophoresis: Force that drives particles from hot to cold regions of fluid

> A spherical particle moves in a Eulerian flow domain according to:

du 18u Re 1
p — — \V4
dt - I:Drag (U -U IO) + I:Thermo |:Drag o pdg CD 24 I:Thermo =C T T
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Thermophoresis: Tests by Tsai (2004)

Pipe diameter= 4.3 mm
Pipe length=1.18 m .
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Thermophoresis: Tests by Tsai (2004)
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Thermophoresis: TUBA tests (Dumaz, 1993)

Pipe diameter= 18 mm
Pipe length=1 m

Air @ 641 K

Wall @ 312 K

U=14.2 m/s

Re=4200

Aerosol:; Csl

=

O AMMD= 1.19 um
GSD=1.86

Local deposition
measured
Error: +or-10%
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Thermophoresis: TUBA tests (Dumaz, 1993)
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Turbulence and thermophoresis for tracer particles

> In isothermal flows, small inertia (tracer) particles
» Don’t deposit
> Tend to remain fully mixed

> If thermophoresis acts on them: particles go towards the wall but
» They do have a chance to reflect back to the bulk because they respond very
quickly to random turbulence bursts (unlike high inertia particles)

» Hence: tracer particles that go to the wall will not all deposit there

> Therefore: turbulence actually reduces thermophoretic deposition of very low
Inertia particles

» This explains why if one ignores radial fluctuating fluid velocities, the model
will over-estimate thermophoretic deposition
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Conclusions

» Non-dimensional Langevin based CRW model offers the best hope
for accurate predictions of practical CFD-based particle dispersion

» Model relies heavily on DNS statistics

» Hence DNS research is of great importance to help produce better
dispersion models

» Best chance of success in predicting dilute particle dispersion in

turbulence flows with CFD:
> Accurate mean flow
» Good stochastic model

> Further benchmarking still necessary, but goal within reach
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