
PHYSICS OF FLUIDS 18, 093302 �2006�
Particle transport and flow modification in planar temporally evolving
laminar mixing layers. I. Particle transport under one-way coupling
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Simulations of two-dimensional, particle-laden mixing layers were performed for particles with
Stokes numbers of 0.3, 0.6, 1, and 2 under the assumption of one-way coupling using the
Eulerian-Lagrangian method; two-way coupling is addressed in Part II. Analysis of interphase
momentum transfer was performed in the Eulerian frame of reference by looking at the balance of
fluid-phase mean momentum, mean kinetic energy, modal kinetic energy, and particle-phase mean
momentum. The differences in the dominant mechanisms of vertical transport of streamwise
momentum between the fluid and particle phases is clearly brought out. In the fluid phase, growth
of the mixing layer is due to energy transfer from the mean flow to the unstable Kelvin-Helmholtz
modes, and transport of mean momentum by these modes. In contrast, in the particle phase, the
primary mechanism of vertical transport of streamwise momentum is convection due to the mean
vertical velocity induced by the centrifuging of particles by the spanwise Kelvin-Helmholtz vortices.
Although the drag force and the particle-phase modal stress play an important role in the early
stages of the evolution of the mixing layer, their role is shown to decrease during the pairing
process. After pairing, the particle-phase mean streamwise momentum balance is accounted for by
the convection and drag force term. The particle-phase modal stress term is shown to be strongly
connected to the fluid phase modal stress with a Stokes-number-dependent time lag in its
evolution. © 2006 American Institute of Physics. �DOI: 10.1063/1.2352728�
I. INTRODUCTION

Interest in particle/droplet flows is prompted by their im-
portance to many industrial processes such as atomization,
spray-injection systems, powdered-fuel combustion, particle
separators, and in the environmental sciences such as sedi-
mentation phenomena, pollutant transport in the atmosphere,
etc. Importance of large-scale flow structures in particle dis-
persion and transport is now fully recognized.1 Large-scale
structures are responsible for particles concentrating in cer-
tain regions of the flow, which in turn affects the flow
strongly in these regions. In many practical applications,
mixing layers represent a unit configuration controlling
cross-stream transport of mass, momentum, and energy.
Study of particle dispersion, accumulation, and flow modu-
lation by particles in mixing layers is, therefore, challenging
and has potential for wide applicability.

The study of particle-laden or dispersed-phase flow can
be split into two components �not necessarily independent�.
One part is the study of particle transport due to the under-
lying fluid flow, such that the presence of particles does not
affect the flow or one-way coupling. Particles, due to their
inertia, do not follow the path of a fluid element that starts at
the same position at a given time. The goal of such studies is
to predict particle dispersion, transport, or accumulation in
selective regions of the flow, based on the knowledge of the
flow field. For one-way coupling to be a valid assumption,
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particle volume fractions and mass fractions should be much
less than one. However, for particles much denser than the
carrier fluid, such as in gas-solid flows, a small volume frac-
tion can result in a mass fraction of the order of one. In this
case, the presence of particles can significantly alter the flow
evolution, although particle-particle interactions could still
be neglected. Such a situation is referred to as two-way cou-
pling. A more detailed description of the different regimes of
particulate flows has been presented by Elghobashi.2

The study of the growth of a mixing layer has been a
long-time endeavor of fluid dynamicists over the last several
decades.3–7 A laminar mixing layer is unconditionally un-
stable to perturbations and it grows due to unstable stream-
wise modes. This instability, known as the Kelvin-Helmholtz
�KH� instability, can be understood by a classical linear sta-
bility analysis including the effect of particles.8,9 As the
instability modes grow, the most unstable mode or the
fundamental mode dominates the growth of the mixing
layer, resulting in the formation of prominent spanwise KH
vortices.

After the formation of KH vortices, several possibilities
exist for the further evolution of a mixing layer: Under
strong spanwise forcing, the rolled up mixing layer is sus-
ceptible to spanwise instabilities, which results in
three-dimensionalization.10,11 On the other hand, if the sub-
harmonic mode is strongly forced, pairing of two neighbor-
ing vortices can occur wherein three-dimensionalization is
suppressed or delayed. The subharmonic velocity field in-
duces two spanwise vortices to turn around each other and

merge, to form one large vortex. In essence, the mixing layer
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is sensitive to external forcing �conditions at the splitter
plate� and retains memory of this for a long time.

In practice, both the above possibilities, viz., three-
dimensionalization and pairing, coexist, and the mixing layer
eventually turns turbulent. In the seminal work of Roshko
and co-workers,6,12 which refocused the attention of turbu-
lence research on coherent structures in turbulence, it was
shown that vortical structures related to the initial instability
persist even after the flow becomes turbulent. The turbulent
mixing layer is thus a combination of organized wave motion
�the KH vortex and its subharmonic� upon which broadband
turbulent fluctuations are superimposed. However, by keep-
ing the spanwise extent of the flow domain small in a simu-
lation, the spanwise instabilities can be suppressed and the
flow remains planar. Such a situation provides the opportu-
nity to isolate the effects of the organized motion on particle
transport, and vice versa.

Studies on particle dispersion „one-way coupling…

One of the first experiments on particle-laden mixing
layers was performed by Lazaro and Lasheras.13 Their pre-
liminary investigations were furthered in a series of papers
by Lasheras et al.14–17 They noticed that the response of the
particles to the coherent velocity field consisting of the KH
vortices, leads to a selective dispersion of droplets along the
mixing layer, with a higher concentration of smaller droplets
in the core of the vortices. Later experiments14 report the
existence of large-scale particle streaks emanating from the
undisturbed spray. They also report the presence of two lay-
ers flanking the vortex cores, where local accumulation of
larger particulates occurs. For forced mixing layers, they15

observed a higher degree of activity and coherency in the
particle concentration field.

Hishida et al.18 present measurements of particle and gas
velocities and particle number densities for a turbulent mix-
ing layer with glass particles. They found that the particle
fluctuating velocity approaches that of the gas phase with
decreasing particle size and increasing width of the mixing
layer. Experiments by Wen et al.19 also reinforce the domi-
nant effect of the large-scale vortices in particle dispersion.

Experiments typically study the dispersion of particles in
spatially evolving mixing layers. In such experiments the
velocity ratios �ratio of the velocity difference to the mean
velocity� are of the order of 1, and hence the experiments
cannot be directly compared to a temporally evolving mixing
layer. With the exception of Ref. 17, the above experiments
have considered one-way coupling situations. A range of par-
ticle Stokes numbers have been studied for both natural and
forced mixing layers with laminar and turbulent inflow con-
ditions. Basic effects such as the accumulation of particles in
the outer region of the Kelvin-Helmholtz vortices and the
effect of pairing in homogenizing the particle distribution
have been observed. Some detailed results on the kinetic
energy transfer between the phases and particle-induced dis-
sipation have been reported.16,17

There have been many numerical studies of particle dis-
persion in mixing layers with one-way coupling. One of the

early studies on the effect of vortex pairing on particle dis-

Downloaded 30 Oct 2006 to 129.132.42.197. Redistribution subject to
persion was performed by Chein and Chung.20 They show
using Lagrangian statistics that particles with small Stokes
numbers disperse laterally at approximately the same rate as
fluid particles and that particles with large Stokes numbers
disperse much less than the fluid particles. Particles with
intermediate Stokes numbers �0.5–5� may disperse more than
the fluid particles, because they are unable to exactly follow
the rotational motion induced by the vortices. They also
showed that the pairing process produces higher particle lat-
eral dispersion than the pre- and post-pairing flows.

A series of studies on the accumulation and dispersion of
heavy particles in forced two-dimensional mixing layers has
been carried out by Meiburg and collaborators. Martin and
Meiburg21 drew attention to the formation of highly concen-
trated particle streaks in the braid region between two vorti-
ces. This work was extended by Raju and Meiburg22 by con-
sidering the effect of gravitational settling. Marcu and
Meiburg23–25 used an analytical model for the stretched
counter rotating streamwise vortices that appear in three-
dimensional mixing layers26 to isolate the effect of these vor-
tices on particle accumulation. Equilibrium points for the
particles and their stability were determined analytically, ac-
counting also for gravity. They found that in the absence of
gravity, accumulation of moderate-Stokes-number particles
can occur only at the center of the braid vortices.

Aggarwal et al.27 presented numerical simulation results
for spatially developing mixing layers with particles. They
showed that particles injected into the faster stream exhibited
higher dispersion compared to those injected in the slower
stream, which was attributed to the asymmetric entrainment
in a mixing layer. Hu et al.28 also presented results on par-
ticle dispersion in spatially evolving mixing layers. They
note in particular that the effects of neighboring vortex struc-
tures on particle transport cannot be accounted for in a tem-
poral simulation. Wang et al.29 focused on the idea of non-
uniform seeding of particles to maximize lateral particle
dispersion in two-dimensional mixing layers. They showed
that nonuniform seeding can significantly enhance the dis-
persion of particles but the location maximizing lateral dis-
persion is both time and Stokes number dependent.

Soteriou and Yang30 investigated the dispersion of par-
ticles in a spatially evolving mixing layer between two
streams of different velocity, density, and viscosity. They
found that variations in the viscosity ratio did not signifi-
cantly alter the relationship between Stokes number and dis-
persion, however, it did result in reduced dispersion for
higher viscosity ratios. With respect to variations in density,
maximum dispersion was found to be for the uniform density
case for particles with intermediate Stokes numbers. They
showed that the mechanism of baroclinic vorticity generation
played an important role in creating asymmetry in particle
dispersion. Recently, Yang et al.31 studied particle dispersion
using a discrete vortex model approach. Their conclusions
are in accordance with previous studies about the Stokes
number dependence of dispersion.

Earlier studies have not clarified all the issues, and many
interesting questions remain to be answered. The controlling
mechanisms for the growth of the particle-phase mixing

layer have not been analyzed in detail. The magnitude of the
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mean particle-phase vertical velocity induced by the KH vor-
tices as a function of particle Stokes number is a key un-
known quantity. Some of the other questions addressed by
this study are: How is the particle-phase modal stress corre-
lated to the fluid phase modal stress? and, What is the rela-
tive importance of the particle-phase modal velocity field in
driving particle-phase mixing layer growth?

The present study analyses in detail the particle-laden
mixing layer problem: the first part deals with mechanisms
of particle transport in two-dimensional mixing layers and
the second part analyses the impact of particles on its growth
and evolution. Particle transport in a forced planar mixing
layer is simulated using an Eulerian-Lagrangian method.
However, instead of focusing on Lagrangian dispersion indi-
cators as in previous work, this study focuses on particle
transport in an Eulerian frame and identifies the dominant
mechanisms of momentum and energy transport in both
phases. To set the stage for the analysis of the impact of
particles on the mechanisms underlying mixing layer growth,
the mean and modal kinetic energy balances are analyzed in
detail.

The presentation structure is as follows. The upcoming
section details the governing equations and the numerical
method used. Results are presented in two parts: the first part
characterizes the growth of the mixing layer using various
indicators such as average modal stress and mean kinetic
energy balance. The second part, discusses the motion of
particles of different Stokes numbers under one-way cou-
pling. The important transport mechanisms for the particle-
phase momentum are elucidated by looking at the stream-
wise momentum balance.

II. GOVERNING EQUATIONS AND NUMERICAL
METHOD

A Lagrangian particle-tracking module32 was developed
and coupled with an incompressible Navier-Stokes solver.
The following equation for the particle motion in a dilute
suspension of small, rigid, and heavy particles under Stokes-
flow conditions was used:33

dup

dt
= − fD

9�

2�pa2 �up − u�xp�t��� , �1�

where up�up ,vp ,wp� is the velocity of a particle, xp is its
position, u�u ,v ,w� is the velocity of the fluid interpolated
onto the particle position, �p is the particle density, � is the
fluid viscosity, a is the particle radius, and fD is given by

fD = 1 + 0.15Rep
2/3. �2�

The continuous phase is represented by the incompressible
Navier-Stokes equations given by

�uj

�xj
= 0 �3�
and
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�ui

�t
+ uj

�ui

�xj
= −

1

� f

�p

�xi
+

1

Re

�2ui

�xj
2 + Fi

fp, �4�

where Fi
fp is the fluid-particle interaction force per unit mass.

The coupling between the fluid and the particles is achieved
by projecting the force acting on each particle onto the flow
grid. The fluid-particle interaction force vector F fp has the
following form at a grid node xm:

Fm
fp = �

�=1

Np �pvp

� fVm
Rrcf

�W�x�,xm� , �5�

where � stands for the particle index, Np for the total number
of particles in the flow, f� for the force on a single particle
centered at x� �given by Eq. �1��, Rrc for the ratio between
the actual number of particles in the flow and the number of
computational particles, and W for the projection weight of
the force on to the grid node xm, which is calculated based on
the distance of the particle from those nodes to which the
particle force is attributed. Vm is the fluid volume surround-
ing each grid node, and vp is the volume of a single particle.

The velocity interpolation �onto particle position�
method was tested in an earlier study.32 Fourth-order-
accurate Lagrangian polynomial interpolation was found to
be adequate for this class of problems. The particle equation
was integrated using a second-order Runge-Kutta method
that gave results identical to those of a fourth-order version.

The Navier-Stokes solver uses a pseudo-spectral collo-
cation method, employing Fourier modes in the streamwise
and spanwise directions and Chebyshev polynomials in the
vertical, nonperiodic direction. The solver is specially de-
signed to simulate a temporally evolving mixing layer where
the vertical dimension, infinite in extent, is mapped onto a
�−1,1� domain using an exponential mapping function.
Further details of the numerical procedure can be found in
Cortesi et al.11

III. TWO-DIMENSIONAL MIXING LAYER: BASIC FLOW
FEATURES

A two-dimensional mixing layer was simulated for a
Reynolds number, Re=400, defined based on the initial vor-
ticity half-thickness and the velocity half-difference. The do-
main size in the streamwise direction was set to 4� /kr,
where kr=0.4418 is the most unstable wavenumber obtained
from linear stability analysis. The vertical extent of the do-
main is infinity, which is made possible by resorting to an
appropriate coordinate transformation.11 The domain was
discretized using 64 Fourier collocation points in the stream-
wise direction and 129 Chebyshev collocation points in the
vertical direction.

The flow was initialized using a hyperbolic-tangent
mean streamwise velocity profile to which perturbations
were added.34 The initial amplitudes of fundamental and the
subharmonic modes were chosen such that the whole simu-
lation period included the saturation of the fundamental
mode and vortex nutation, followed by the increase in the
energy of the subharmonic mode which results in the pairing

of the two KH vortices. The initial perturbation amplitudes
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were � f =10−2 and �s=10−4, where the subscripts f and s
denote the fundamental and subharmonic modes, respec-
tively.

The evolution of the kinetic energy in the fundamental
and subharmonic modes is shown in Fig. 1. The fundamental
mode is seen to saturate at a nondimensional time of 32, after
which the energy in the mode oscillates until the subhar-
monic mode gains significant energy. We define the point of
intersection between the two energies as a time marking the
beginning of the pairing process. The pairing process results
in a significant increase in the mixing layer thickness and can
be assumed to have ended at t�90, when the energy in the
subharmonic mode reaches a maximum.

Snapshots of spanwise vorticity at different time instants
are shown in Fig. 2. The following conditions of the flow can

FIG. 1. Evolution of the fundamental and subharmonic mode energies.
Downloaded 30 Oct 2006 to 129.132.42.197. Redistribution subject to
be observed: saturated fundamental mode undergoing vortex
nutation at t=48, initiation of pairing at t=72, ending of the
pairing process at t=96, and a single large vortex at t=120.

The evolution of the mean kinetic energy, the modal ki-
netic energy, and the total kinetic energy within a fixed do-
main size in the vertical direction �−50�z�50� is shown in
Fig. 3�a� �mean and modal velocity and kinetic energy are
defined in Secs. III A and III B, respectively�. In order to
visualize the mean and modal energies in the same plot the
initial total kinetic energy is added to the modal kinetic en-
ergy. The quantities are then normalized by the total initial
kinetic energy. Thus, Fig. 3�a� actually shows the total,
mean, and modal+ total kinetic energies. One can clearly see
the exchange of energy between the mean and the wave com-
ponents. The modal energy shows a first peak at around
t=32 and then oscillates until the start of pairing. After this
peak there is a reverse flow of energy from the modes to the
mean, as seen from Fig. 3�a�, where a reduction in the modal
energy results in an increase in the mean energy. This oscil-
lation in the modal energy is called vortex nutation.35 This
phenomenon is in contrast to broadband turbulence, where
the net flow of energy is from the larger to the smaller scales.
The presence of organized motion makes this aspect of en-
ergy transfer important.

As will be shown in Sec. III B, the transfer of energy
from the mean to the modes is given by −	u�w�
d	u
 /dz,
where 	 
 denotes an average along horizontal x-y planes
�	ui
 denotes the mean and ui� the modal velocity�. Therefore,
the direction of energy flow is controlled by the sign of
−	u�w�
 as d	u
 /dz is always positive in this flow. −	u�w�
 is

FIG. 2. Spanwise vorticity contours
for a particle-free mixing layer at dif-
ferent time instants. �a� t=48—
nutation; �b� t=72—pairing initiation;
�c� t=96—pairing; �d� t=120—post
pairing.
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the modal stress arising due to the spatial averaging of the
organized waves. Figure 3�b� shows the evolution of the
modal stress �normalized by urms� and wrms� � with time, where
a single number at every time has been obtained by further
averaging along the vertical direction.

A positive value for the modal stress denotes a transfer
of energy from the mean flow to the modes and vice versa.
The modal stress changes sign at t=32, which is the point of
maximum energy in the fundamental mode. The change in
sign of the modal stress implies a lack of self similarity for
mixing layers that are strongly forced at the most unstable
frequencies; the mixing layer does not grow linearly with
time, instead, it has periods of growth interspersed with pe-
riods of shrinkage. This behavior has also been observed in
experiments on force mixing layers.36 The oscillation in the
average modal stress after t=32 denotes vortex nutation,
whereby the fundamental mode exchanges energy with the
mean until the subharmonic mode gains in energy. The zero-
crossing of the average modal stress at t�90 denotes the
point of maximum energy in the subharmonic mode followed
by nutation of the large vortex after pairing. The pairing
process results in a large transfer of energy from the mean to
the waves.

A. Mean momentum balance for the fluid phase

Throughout this study, the Eulerian viewpoint in describ-
ing the flow has been preferred over Lagrangian statistics. As
a first step, we look at the balance equations for the mean

FIG. 3. Evolution of �a� total kinetic energy, mean kinetic energy, and modal
kinetic energy, and �b� modal stress averaged over the vertical direction.
momentum of the fluid phase in this section. Splitting the
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instantaneous streamwise fluid velocity u�x ,z , t� into the
mean �	u
�z , t�� and modal �u��x ,z , t�� components by aver-
aging the Navier-Stokes equations along the streamwise di-
rection, we obtain the nondimensional balance equation for
the mean streamwise velocity 	u
:

�	u

�t

= −
�	u�w�


�z
+

1

Re

�2	u

�z2 + 	fx,CD
 , �6�

where fx,CD denotes the total interaction force per unit mass
between the particle and the fluid phases. The balance for the
mean vertical velocity is obtained as

−
�	w�w�


�z
=

�	p

�z

+ 	fz,CD
 , �7�

because the mean vertical velocity 	w
 always remains zero
by virtue of continuity. The mean momentum balance in the
vertical direction will not be presented as it is not dynami-
cally significant. The terms arising due to the presence of
particles and two-way coupling are introduced here for use in
Part II.

The two terms in the right-hand side �RHS� of Eq. �6� at
t=24 are presented in Fig. 4�a�. At t=0, the viscous term is
larger than the modal stress derivative �−�	u�w�
 /�z�, be-
cause the initial amplitudes of the perturbations are very
small; however, at t=24, the viscous term is negligible as

FIG. 4. Profiles of the viscous diffusion and modal stress derivative terms in
the mean streamwise momentum balance equation. �a� t=24; �b� modal
stress derivative.
compared to the modal stress derivative term. As expected,
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the value of the modal stress derivative is positive in the
lower part of the domain, where it increases the mean veloc-
ity, and negative in the upper region, where it decreases the
mean velocity. The modal stress derivative is the main agent
of evolution of the mean streamwise velocity.

The modal stress derivative profiles at selected times are
presented in Fig. 4�b�. From Fig. 3�b�, we see that around
t=48 the mixing layer is not growing much due to funda-
mental mode saturation. This implies a small value for the
modal stress derivative term. At t=72 the mixing layer is
poised to grow rapidly due to incipient pairing, and at
t=96 the mixing layer is shrinking and hence the sign at this
time instant is reversed.

B. Kinetic energy balances

Using the mean and modal fluid velocities 	ui
 and ui�,
respectively, the balance of the mean kinetic energy
	k
=1/2	ui
	ui
 is given as follows:

�8�

where the first two and the fourth terms in the RHS are the

viscous diffusion, viscous dissipation, and the energy ex-
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change between the mean and the modes, respectively
�modes include all finite length scales in the flow; however,
most of the energy is accounted for by the fundamental and
the subharmonic modes�. The third term is the conservative
transport of mean kinetic energy by the modes and the last
term is the energy exchange between the particles and the
fluid. In Eq. �8�, the most important term governing the dy-
namics of the mixing layer is the energy exchange term �it
also appears in the modal kinetic energy equation�.

The balance of the average modal kinetic energy
	k�
=1/2	ui�ui�
 is given as follows:

�9�

where the index notation is used only for the second term in
the RHS. The terms in the RHS are viscous diffusion, vis-
cous dissipation, energy exchange with the mean, transport
by the modes, pressure diffusion, and fluid-particle interac-

FIG. 5. The mean kinetic energy bal-
ance at different time instants. Legend:
�-·-� viscous diffusion; �¯� viscous
dissipation; �—� energy exchange
term; �- - -� transport by the modes;
����� sum of the RHS. �a� t=24; �b�
t=48; �c� t=72; �d� t=96.
tion terms.
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The mean kinetic energy balance at different time in-
stants is shown in Fig. 5. As can be expected for a laminar
free-shear flow at moderate to high Reynolds numbers, the
viscous diffusion and dissipation terms are much smaller
than all the other terms, except at t=48. At this time, the
fundamental mode is saturated and the mixing layer is not
growing anymore; due to this, all the other terms are more
than one order of magnitude smaller compared to other
times. Note that the sign of the energy exchange term is not
uniform at this time, which means that at this time, there is
no net exchange of energy between the mean and the modes,
but local exchanges are ongoing. At t=24 and 72, the mixing
layer is growing and the energy transfer term is strongly
negative. In contrast, at t=96, the mixing layer is shrinking
and the energy transfer term is positive �transfer of kinetic
energy from the modes to the mean�. For a growing mixing
layer �	k
 /�t is negative and vice versa. The other significant
term in the mean kinetic energy balance is the transport term
due to the modes. This represents the effect of the modal
velocity field in transporting �diffusion in turbulence par-
lance� mean kinetic energy. Therefore, the dynamics of a
mixing layer can be closely understood by analyzing the
mean kinetic energy balance, also in the case of particle-fluid
interaction.

The modal kinetic energy balance at different time in-
stants is shown in Fig. 6. Here, too, depending on the time
instant at which the mixing layer is growing or shrinking, the
net balance of all the terms in the RHS of Eq. �9� is positive
FIG. 6. The modal kinetic energy bal-
ance at different time instants. Legend:
�-··-� viscous diffusion; �¯·� viscous
dissipation; �-·-� energy exchange
term; �- - -� transport by the instability
modes; �——� pressure diffusion;
����� sum of the RHS. �a� t=24; �b�
t=48; �c� t=72; �d� t=96.
�t=24,72� or negative �t=96�. Except at t=48, the viscous
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FIG. 7. Variation of �a� the maximum particle Reynolds number and �b� the

effective Stokes number, with time for different Stokes numbers.
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diffusion and dissipation terms are negligible compared to
the energy exchange, pressure diffusion, and transport by the
modes. All the transport terms become smaller in magnitude
at t=48 where the mixing layer is at almost zero growth
stage. It is interesting to note the oscillatory behavior of the
terms. As compared to the 	k
 equation, an additional term in
the form of the pressure diffusion exists in the modal kinetic
energy equation. This term, along with the transport by the
modes, acts as a conservative distribution agent �these terms
are usually called diffusion terms in turbulence parlance but
in the absence of small scales they retain their convective
character here�. The main idea behind presenting the above
balances is to contrast this with the particle-phase balances
and also analyze the effect of particles, under the assumption
of two-way coupling, to these transport mechanisms; this
latter analysis will be presented in Part II of the study.

IV. PARTICLE TRANSPORT UNDER ONE-WAY
COUPLING

In this section, results from the simulations of particle-
laden mixing layers under the assumption of one-way cou-
pling are presented. The same calculation as the particle-free
flow was recalculated with four particle Stokes numbers: 0.3,
0.6, 1, and 2. As an initial condition, the particles were ran-

domly distributed in the domain with their velocities set
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equal to the fluid velocity at their positions. Particle data
were stored every two nondimensional time units.

The particles were tracked in a three-dimensional do-
main obtained by adding spanwise planes to the two-
dimensional fluid computational domain. The two-
dimensional flow velocity was then copied on to these extra
planes. This was required by the interpolation algorithm for
calculating the flow velocity at particle positions �four span-
wise planes for a fourth-order method�. Particle statistics, for
example number density, were calculated by first averaging
in the spanwise direction and then in the streamwise direc-
tion �x�. For each Stokes number, 100 000 particles were
tracked.

Throughout the period of the simulation, the average
particle Reynolds number Rep was significantly smaller than
1 for all cases. The maximum particle Reynolds number was
less than 2 at all times. Figure 7�a� shows the evolution of
the maximum particle Reynolds number with time. However,
the values of the maximum particle Reynolds numbers show
the correction to the Stokes drag to be small.

Before proceeding further with the analysis, it is impor-
tant to mention that as the mixing layer grows in time, the
mean flow time scale increases. Since the ratio between the
initial vorticity half-thickness and the velocity half-
difference is used as the reference time scale to define the

FIG. 8. Particle patterns in a vertical plane at t=72. �a�
St=0.3; �b� St=0.6; �c� St=1; �d� St=2.
Stokes numbers mentioned above, effectively, the particle
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response to the flow becomes faster with time. This is be-
cause the vorticity half-thickness increases with time,
whereas the velocity difference remains constant, implying
an increasing fluid flow time scale. To illustrate this, the
evolution of the effective Stokes number given as
Stt=0��h�0� /��h�t� is shown in Fig. 7�b�. It can be anticipated
that such a reduction in the effective Stokes number must
result in a reduction in the particle Reynolds numbers with
time, which can be gleaned from Fig. 7�a�. In addition, from
Fig. 7�b� we see that particles with St=2 can be expected to
participate in the pairing process the most, because at the
time of pairing initiation they have an effective Stokes num-
ber of approximately one; as known from previous studies,
particles with Stokes number of unity respond the most to
the flow.20

A. Centrifuging effect

It is a known fact20 that as the KH vortices develop,
particles start to move towards the edges of the vortices. For
the range of Stokes numbers considered, the higher Stokes
number particles leave the vortex cores faster and accumu-
late more in the periphery and in the braid region connecting
the two vortices. The best way to observe this is to look at
snapshots of the particle positions at different times. In the

following sequence of figures �Figs. 8 and 9�, particle
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patterns for all the four Stokes numbers are shown at t=72
and 96.

The evacuation of the central part of the domain pro-
ceeds at a rapid pace for St=1 and 2, such that at t=72 �Fig.
8� the whole region is devoid of particles. However, the pair-
ing process �Fig. 9� re-entrains a large number of particles
back into the central region, specifically at the braid region.
After the pairing, a situation similar to the pre-pairing time
repeats because the only remaining braid region now again
has accumulated particles just as before. This is significant
especially for St=1 and 2 particles, because before pairing
the whole central region was devoid of particles. An impor-
tant characteristic of mixing layer evolution is the sustained
presence and influence of the KH vortices. In contrast to
turbulent flows, where a degree of randomness prevents for-
mation of persistent patterns, the action of the KH vortices
for a long period of time results in selective accumulation of
even small Stokes number particles.

The total number of particles at any time in the central
section of the mixing layer z� �−2,2� for all the Stokes
numbers is shown in Fig. 10. Clearly the depletion rate is
much higher for larger Stokes numbers. Surprisingly, the to-
tal number of particles coming back to the central section

FIG. 9. Particle patterns in a vertical plane at t=96. �a�
St=0.3; �b� St=0.6; �c� St=1; �d� St=2.
during the pairing process is greater than the initial number.
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The rate of depletion directly implies the presence of a mean
particle vertical velocity �the fluid has a zero mean vertical
velocity�.

B. Particle statistics

Studies on particle dispersion in turbulent flows have
revealed the phenomenon of preferential accumulation of
particles.1,37 It is well established that inertial particles will
migrate away from circulating regions and accumulate in
streaming and stagnation zones. The accumulation of par-
ticles and the patterns formed thereof depend on the inertia
of the particle, the time scale and intensity of structures in
the flow and for this particular case also on the lifetime of the

FIG. 10. Number of particles in the region z� �−2,2�.
Downloaded 30 Oct 2006 to 129.132.42.197. Redistribution subject to
KH vortices. In two-dimensional mixing layers, preferential
concentration occurs mainly due to the sustained churning
effect of the KH vortices, which then undergo an organized
pairing process. The folding event results in thin regions of
high particle concentration sandwiched between regions de-
void of particles.

We look now at horizontal-plane �x-y� averaged particle
statistics. Local Eulerian quantities such as number density n
and particle velocity upi are calculated by averaging in a
volume around the computational node, which are then av-
eraged over the horizontal plane. The profiles for the number
density and other quantities shown below have been
smoothed to make them presentable as otherwise they would
be noisy. Smoother average quantities can be obtained by
increasing the number of particles tracked;38 however, since
the motivation is to analyze the relative importance of differ-
ent transport mechanisms such an attempt was not made. A
simple discrete smoothing function using a three-point sten-
cil was used, and five iterations were carried out. Figure 11
shows the number density profiles, normalized by the initial
uniform number density value, at different times. The pri-
mary effect of preferential accumulation in two-dimensional
mixing layers is evident. The accumulation at the periphery
is significant, especially for larger Stokes numbers. At t=96,
after the pairing has taken place, multiple peaks in the num-
ber density profiles are visible, which signify alternate bands
with and without particles. Due to the streamwise average,
the tendency of particles to accumulate in the braid region is
not clearly brought out in these profiles.

FIG. 11. Particle number density pro-
files for different Stokes numbers.
Legend: �——� St=0.3; �- - -� St=0.6;
�-·-� St=1; �-··-� St=2. �a� t=24; �b� t
=48; �c� t=72; �d� t=96.
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In contrast to the fluid flow, the particle phase has a
nonzero plane-averaged vertical velocity. The variation in
time of this mean vertical velocity for different Stokes num-
bers is presented in Fig. 12. Locally, the velocity grows fast
initially and reaches significant values at t=48. At t=72,
when pairing is initiated, the velocity at the edge of the mix-
ing layer changes sign and starts driving the particles back to
the center �in accordance with Fig. 10�. Once the pairing
process is over, the mean vertical velocity again regains a
shape similar to the initial one �at t=96�. From an Eulerian
modeling standpoint, the nonzero mean vertical velocity is a
key controlling quantity; for example, in particle-laden tur-
bulent pipe flows where particles have a nonzero mean wall-
ward velocity due to turbophoresis.39 The role of this con-
vective transport is analyzed further in the next section. To
the best of our knowledge, these statistics have not been
presented before for a two-dimensional mixing layer.

C. Mean momentum balance for the particle phase

The plane-averaged particle number density and momen-
tum equations are obtained by performing a streamwise av-
erage over the spanwise averaged equations.38 The following
transport equations are then obtained:

�	n

+

�
	n
	wp
 = 0, �10�
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The interesting points to note in these equations, in com-
parison to the averaged equations for the fluid flow �Eqs. �6�
and �7��, are the absence of viscous diffusion and pressure
gradient terms, and the nonzero convective term due to the
finite mean vertical velocity. In addition, the particle phase is
not incompressible, in the sense of the velocity field being
divergence free; accumulation and depletion of particles cor-
respond to compression and dilation of the velocity field.

For the fluid flow, the only agent driving changes in the
mean streamwise velocity is the modal stress derivative term.
A comparison of the particle modal stress averaged over the
vertical direction is shown in Fig. 13. The particle phase
shows a behavior similar to that of the fluid phase, except for
a systematic lag, which is as much as ten nondimensional

FIG. 12. Mean vertical velocity pro-
files for the particle phase at: �a� t
=24, �b� t=48, �c� t=72, and �d� t
=96. Legend: �——� St=0.3; �- - -�
St=0.6; �-·-� St=1; �-··-� St=2.
time units for St=2. This points to a history effect in the
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particle phase directly proportional to the Stokes number.
The lower Stokes number particles are able to follow the
flow dynamics with a fixed lag, but St=2 particles are unable
to follow the sign changes in the fluid average modal stress.
This is because St=2 particle are almost completely depleted
from the mixing layer and therefore do not feel the changes
in the fluid modal stress happening in the center of the layer.

The overall magnitude of the particle-phase modal stress
remains of the same order as that of the flow. For the fluid,
the mixing layer could be characterized as growing or

FIG. 13. Evolution of the particle-phase modal stress averaged over the
mixing layer.
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shrinking based on the sign of the averaged modal stress
term. The same cannot be said for the particle phase, as other
equally significant terms exist.

From the particle patterns presented before, it is obvious
that the particle phase does not behave like a typical mixing
layer, with the particle concentration being highly nonuni-
form. Analyzing the momentum balance should provide in-
sight into the main particle transport processes. The stream-
wise momentum balances for particles with St=0.6 and 1 are
presented in Figs. 14 and 15, for two different times. The
particle streamwise momentum balance is dominated by con-
vection by the mean vertical velocity; the modal stress de-
rivative and drag force terms are, however, never negligible.
From the sign of the drag force, it can be concluded that the
particles are driven by the flow �lag the flow� at least up to
t=48. However, at t=24, there is a region in the center of the
mixing layer where the particles lead the flow. This is due to
the motion of particles from the core of the vortex towards
the braid region where the mean velocity gradient is lower.
For St=0.6, the convective term is smaller than the modal
stress derivative term, whereas for St=1 it is greater. This
shows that the particle-phase modal stress is not as sensitive
to the Stokes number as the mean vertical velocity.

The shape of the convective term �negative in the core
and positive at the edge on the positive z side� reflects the
depletion of streamwise momentum in the core and accumu-
lation near the periphery of the vortices. The momentum

FIG. 14. Particle-phase streamwise
momentum balance at t=24 and 48.
Legend: �——� convective term; �- - -�
drag force; �-·-� model stress deriva-
tive term; ����� sum of the RHS. �a�
t=24, St=0.6; �b� t=24, St=1; �c� t
=48, St=0.6; �d� t=48, St=1.
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balance for the particle phase cannot be directly compared to
the particle-phase velocity plots presented before, because of
the variation in the number density. Therefore, the convec-
tion term represents both, the change in momentum due to
variations in the vertical mass flux �	n
	wp
�, and due to the
gradient in the streamwise velocity. A direct comparison for
the growth of the velocity layers will require the particle
equations to be rewritten in nonconservative form.

At t=48, the modal stress term for both the fluid flow
and the particles is small �Fig. 13�. Therefore, the particle
streamwise momentum balance is governed only by the con-
vection term and the drag force. Up to t=48, the drag force
slows down the rate of spread of the particle streamwise
momentum. Because the drag force is pulling the particles, it
has the effect of increasing the particle streamwise momen-
tum and therefore it acts against the growth of the particle
layer. This simply means that particles arriving from lower
velocity regions due to convection, get accelerated by the
drag force.

The streamwise momentum balances at t=72 and 96
�Fig. 15� reveal the increasing role of the convection term in
transporting streamwise momentum laterally. The magnitude
of the convective term increases continuously with time
�note the change in the range of the abscissa�, whereas the
magnitudes of the other terms do not. In fact, Fig. 13 shows
that the particle-phase modal stress follows the fluid phase
values quite closely in magnitude and as a result ceases to
play an important role in the lateral transport of streamwise

momentum. The rate of change of particle streamwise mo-
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mentum becomes almost equal to the convective term. At
t=96, after the pairing process �Figs. 15�c� and 15�d��, the
streamwise momentum balance takes a form similar to that at
the early evolution of the mixing layer with the significant
exception that the particle-phase modal stress term is much
smaller than the other terms. The drag force increases in
magnitude and remains significant in the overall balance.
The mixing layer can be divided into two regions: the
streamwise momentum depletion region and the accumula-
tion region. In the depletion region the drag force acts
against the convection term, and in the accumulation region,
both act in tandem.

V. CONCLUSIONS

Simulations of two-dimensional, particle-laden mixing
layers were performed for particles with various Stokes num-
bers under the assumption of one-way coupling using the
Eulerian-Lagrangian method. Transport of particles with four
Stokes numbers, viz., 0.3, 0.6, 1, and 2, was analyzed. Most
of the earlier studies on particle-laden mixing layers have
focused on characterizing particle transport using Lagrangian
dispersion indicators. In this work, analysis of two-phase
momentum transfer was presented in the Eulerian frame of
reference by looking at the balance of fluid-phase mean mo-
mentum, mean kinetic energy, modal kinetic energy, and
particle-phase mean momentum.

The differences in the dominant mechanisms of vertical

FIG. 15. Particle-phase streamwise
momentum balance at t=72 and 96.
Legend: �——� convective term; �- - -�
drag force; �-·-� modal stress deriva-
tive term; ����� sum of the RHS. �a�
t=72, St=0.6; �b� t=72, St=1; �c� t
=96, St=0.6; �d� t=96, St=1.
transport of streamwise momentum between the fluid and
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particle phases was clearly brought out. In the fluid phase,
the growth of the mixing layer was shown to be brought
about by the energy transfer from the mean to the modes
and the transport of mean momentum by the modes. The
transport processes in the fluid phase were fully character-
ized by looking at the balances of the mean and modal ki-
netic energies.

The centrifuging effect of the spanwise Kelvin-
Helmholtz vortices as a function of particle Stokes number
was discussed. It was shown that in contrast to the fluid
phase, the particle phase has a nonzero mean vertical veloc-
ity due to the centrifuging effect. The particle-phase modal
stress was shown to remain strongly correlated to the fluid-
phase modal stress throughout the simulation period. How-
ever, a systematic lag is seen to exist between their evolution
with the lag being higher for higher Stokes numbers.

It was shown that the convection of streamwise momen-
tum by the plane-averaged particle-phase vertical velocity is
the dominant term in the particle streamwise momentum bal-
ance. The mean particle vertical velocity assumes significant
values depending on the value of the particle Stokes num-
bers. Together with the gradient in the streamwise velocity
along the vertical direction, the convection term gains in im-
portance. Thus the vertical drag force indirectly plays a more
significant role in the streamwise particle momentum balance
than the streamwise drag force. Except at the pre-pairing
stage and during pairing, particle velocity lags the fluid ve-
locity, because of the motion of particles from low-velocity
regions to high-velocity regions. During pairing, particles
from the free stream are engulfed into the mixing layer and
they can transfer energy to the fluid �under two-way cou-
pling�.

Although the drag force and the particle-phase modal
stress play an important role in the evolution of the particle-
phase mixing layer in the early stages, their role was shown
to decrease during the pairing process. After pairing, the
particle-phase mean streamwise momentum balance is ac-
counted for by the convection and drag force terms. The
particle-phase modal stress term becomes less significant as
its magnitude remains strongly connected to the fluid phase
modal stress. The effect of particle transport on the fluid flow
will be presented in Part II of this study.
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