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Solution of Homework No 2: transport/storage of compressible fluids

a.

1. Pipeline geometrical data and the knowledge about
the transformation of the gas as it flows along the
line can be used to verify if the pressure of tank
B is large enough to generate sonic flow conditions.
From Bernoulli equation written for isothermal flow
along a pipeline when the flow is sonic, indicated
with 1 and 2 respectively the values of pressure at
pipe inlet (p1 ≃ pB) and at pipe outlet in tank A,
we get:

ln
p1
p2

+
1

2

(

1−
(

p1
p2

)2
)

+ 2f
L

D
= 0 (1)

from which we can calculate the critical pressure
ratio:
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Neglecting at first the logarithmic term, we get:
p1/p2 = 3.605 and by iterating including the con-
tribution of the logarithmic term we converge at
(p1/p2)cr = 3.969. Since pB/pA = 25 ≫ (p1/p2)cr,
the gas flow is sonic. Alternatively, we can calculate
the minimum value of pressure in tank B necessary
to generate sonic flow along the pipeline, which is
pB,min,cr = (p1/p2)crpatm = 3.969 atm. Since the
initial value of pressure in tank B is larger than
pB,min,cr, ten the flow is sonic. For sonic flow

• the transferred gas flow rate depends on pres-
sure and density establishing at the outlet sec-
tion of the pipe:
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• the critical pressure ratio between the up-
stream and downstream sections of the pipe
is constant
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(
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)

−1

cr

p1 = 6.299 · 105Pa (4)

Therefore we get G(t = 0) = 2135.56 kg/m2s.
Transferred flow rate is given by ṁ = GA =
4.19 kg/s.

2. The mass of gas transferred from B to A to charge
tank A from 1 atm to 15 atm can be calculated as:

∆m = mfin−min = M(nfin−nin) =
MV

RT
(pA,fin−pA,in)

(5)

where the ideal gas law has been used to calculate
the number of moles of gas n given the pressure.
From calculations we getm = 80.46 kg. It would be
possible (but much more complex) to calculate the
transferred mass integrating in time the value of the
specific flow rate G transported along the line. The
functional relationship G = f(p1) is simple until
the flow remains sonic but becomes more complex
to integrate when, due to gas accumulation in tank
A, pA becomes large enough to change the sonic
regime into sub-sonic. This happens when pA =
6.299 · 105Pa, i.e. the filling of the tank is made
by sub-sonic flow for a significant fraction of the
time (from 6.299 to 15 atm). During this period,
we should integrate G given by:
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where p1 = pB = 25 atm and p2 = f(t) from mass
conservation in tank B.

3. Assuming isothermal efflux from tank A, to check
if the flow is sonic we need to compare the pressure
in the tank with the value necessary to produce
sonic flow. Indicating with pA the value of pres-
sure in tank A and with p3 the value of pressure
at the broken section, Bernoulli equation written
for efflux from the tank (neglecting viscous losses)
under isothermal condition and sonic flow gives:

(
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)

cr

= e1/2 = 1.649 (7)

alternatively we can calculate the minimum value
of pressure in tank A required to generate sonic
flow, pA,min,cr = (pA/p3)crpatm = 1.649 · 105Pa.
Being pA = 20 · 105Pa, the flow is sonic at starting
time and until pA > pA,min,cr is true.

4. Closing the flow from tank B, the mass balance on
tank A gives:

MV

RT

dpA
dt

= −ArG (8)

where Ar is the hole section and G is the specific
flow rate, which under sonic condition is:
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pA = kpA

(9)
with k = 0.0021 and

dpA
dt

= − RT

MV
kpA = −KT pA (10)
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with KT = 0.0176 s−1. Separating the variables
and integrating between the values of pA at starting
time and at the final time (t∗) of sonic flow, we get

t∗ =
1

KT
ln

pA(0)

pA(t∗)
= 142 s (11)

where pA(t
∗) = pA,min,cr.

b.

1. Pipeline geometrical data and knowledge about the
transformation of the gas as it flows from the tank
to the burner can be used to verify if the pressure in
the tank is large enough to generate sonic flow con-
ditions. Using 1 and 2 to indicate respectively the
upstream (p1 ≃ pserb) and downstream section of
the pipe, Bernoulli equation written for isothermal
flow along a pipeline when the flow is sonic gives
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from which we can calculate the critical pressure
ratio:
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Neglecting at first the logarithmic term, we get
p1/p2 = 9.539 and by subsequent iterations
(p1/p2)cr = 9.775. Since pserb/patm = 30 ≫
(p1/p2)cr, the flow is sonic. Alternatively, we can
calculate the minimum pressure in the tank re-
quired to generate sonic flow, which is: p1,min,cr =
(p1/p2)crpatm = 9.775 atm. Since at starting time
the pressure in the tank (30 atm) is larger than
p1,min,cr, the flow is sonic. For sonic flow

• the flow rate depends on pressure and density
establishing at the downstream section

G =
√
p2ρ2 =

√

M

RT
p2 (14)

• the ratio between upstream and downstream
pressure is constant and equal to the critical
pressure ratio

p2 =

(

p1
p2

)

−1

cr

p1 = 3.069 · 105Pa (15)

We calculate G(t = 0) = 1259.38 kg/m2s. The
mass flow rate is given by ṁ = GA = 39.56 kg/s.

2. Even when the pressure in the tank halves, its value
is large enough to generate sonic flow. The mass

conservation equation written for the gas in the
tank gives:
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= −AG (16)

where A is the section of the pipe and G is the
specific flow rate, given by
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from which

dp1
dt

= − RT

MV
kp1 = −KTp1 (18)

with KT = 0.01958 s−1. Separating the variables
and integrating between the starting (30 atm) and
final (15 atm) values of pressure in the tank we get

t =
1

KT
ln

p1(0)

0.5p1(0)
=

1

KT
ln 2 = 35.4 s (19)

3. The mass of gas transferred to the burner up to
that time can be calculated as

∆m = min−mfin = M(nin−nfin) =
MV

RT
(p1,in−p1,fin)

(20)
where the ideal gas law has been used to evaluate
the number of moles of the gas n associated to each
value of pressure. From calculations we get m =
1010.34 kg.

c.

1. Indicating with 0 and 1 respectively the value of
pressure inside the tank and at the outlet section
of valve V1, for sonic efflux from the tank under
isothermal condition, the critical pressure ratio is
p1/p2 = e1/2 = 1.649. The minim value of pres-
sure in the tank required to generate sonic flow is
p1,min,cr = (p1/p2)crpatm = 1.649 atm. Being the
starting value of pressure larger than this value, the
flux through the valve will be sonic.

2. The mass conservation equation written for the gas
in the tank is

MV

RT

dp1
dt

= −AvG (21)

where Av is the valve cross-section. Supposing that
the flow is sonic up to 40 s, G is
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from which

dp1
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= − RT

MV
kp1 = −KTp1 (23)
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where KT = 0.00743 s−1. Separating the variables
and integrating we can calculate the value of pres-
sure after 40 s:

p1(t = 40 s) = p1(0) exp(−KT t) = 7.428 · 105Pa (24)

Since this value is larger than p1,min,cr, the initial
assumption (sonic flow during 40 s) was correct.
The mass of gas transferred in this time is

∆m = min−mfin = M(nin−nfin) =
MV

RT
(p1,in−p1,fin)

(25)
where the ideal gas law has been used to calculate
the number of moles of gas n for each value of pres-
sure. From calculations we get m = 16.89 kg.

3. When the valve V2 opens, the pressure in the tank is
equal to 7.428 ·105Pa. This pressure value could be
large to generate sonic flow along the pipeline. Indi-
cating with p3 the pressure at the downstream sec-
tion of the pipe, the critical pressure ratio (isother-
mal Bernoulli equation for the pipeline under sonic
flow) is given by
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from which we get the critical pressure ratio
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Neglecting (initially) the logarithmic term, we get
p1/p3 = 11 and by successive iterations (p1/p3)cr =
11.217. Since p1/patm = 7.428 ≪ (p1/p3)cr, the
flow is sub-sonic. Using isothermal Bernoulli equa-
tion for the pipeline under sub-sonic conditions we
get

G =

√

(p11 − p2atm)M/(2RT )

ln(p1/patm) + 2fL/D
= 169.4 kg/m2s (28)

The mass flow rate is ṁ = GA = 0.083 kg/s.

d.

1. The mass conservation equation for the gas

MV

RT

dp1
dt

= win − wout = win −GA (29)

where win and wout represent the in-going and
out-going flow rates. At steady state conditions,
dp/dt = 0 and the out-going and in-going mass flow
rates should be equal. Indicating with A the cross
section of the pipe we get G = 318.30 kg/m2s. To
calculate the pressure in the tank we need to check

if the flow is sonic or not. We can calculate the
minimum value of flow transferred under sonic flow
as:

Gmin,cr =
√
patmρatm =

√

M

RT
patm = 256.28 kg/m2s

(30)
Pressure and density in the outlet section become
equal to environmental values when the flow regime
changes from sonic to subsonic. Since G > Gmin,cr,
the flow is sonic. The value of pressure at the down-
stream section is fixed by the flow rate G and is
given by:

Gcr =
√
p2ρ2 =

√

M

RT
p2 → p2 = G

√

RT

M
= 1.242·105Pa

(31)
Since the flow is sonic, the value of pressure at the
upstream section is fixed by the critical pressure
ratio, which depends on the pipeline geometry and
friction factor f . Using Blasius equation to calcu-
late the friction factor we get f = 0.079Re−0.25

where Re = GD/µ and f = 0.002166. For
the pipeline under investigation we get (isothermal
Bernoulli equation for a pipeline under sonic flow)
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from which we can calculate the critical pressure
ratio
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Neglecting at staring time the logarithmic term we
get p1/p2 = 8.386 and iterating (p1/p2)cr = 8.639.
We can then calculate p1 = (p1/p2)crp2 = 10.73 ·
105Pa.

2. During maintenance operations, the mass balance
equation for the gas in the tank is:

MV

RT

dp1
dt

= win (34)

where win = cost. The pressure variation is linear
in time:

p1(t) = p1(0) +
winRT

MV
t (35)

and we can calculate the time at which p1(t) =
10 atm:

t =
p1(t)− p1(0)

winRT/MV
= 24.356 s (36)

3. When the valve opens, the tank which is at p1 =
20 atm discharges gas into the environment. As-
suming adiabatic efflux from the tank the critical
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pressure ratio (Bernoulli equation for adiabatic ef-
flux from a tank under sonic condition, γ = 1.3)
is:

(

p1
p2

)

cr

=

(

γ + 1

2

)

γ

γ−1

= 1.83 (37)

The minimum value of pressure generating sonic
flow from the tank is p1,min,cr = p1/p2)crpatm =
1.83 ·105 Pa. Since p1 > p1,min,cr, the flow is sonic
and the specific mass flow rate is given by:

G =
√
γp2ρ2 =

√

γ
M

RT2
p2 = (38)

=

√

γ
M

RT2

(
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)
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p1 (39)

We can calculate T2 from T1 using the relationship
T γ/pγ−1:

(

T1

T2

)

cr

=

(

p1
p2

)

γ−1

γ

cr

=
γ + 1

2
= 1.15 (40)

from which T2 = 254.8 K. Substituting T2 in 39
we get G = 3481.74 kg/m2s.

e.

1. Each segment of the natural gas pipeline starts
with a recompression unit. Indicating with 1 and
2 respectively the point upstream and downstream
the recompression unit, and with 3 the end of the
pipeline (3=1 for a periodic line), the minimum
pressure along the line is at point 3. We should
check that p1 = p3 ≥ 1.5 · 105 Pa. The mass flow
rate transferred along the pipeline is:

ṁ = Qρ (41)

where ρ s the gas density at measuring condi-
tions (i.e. pressure and temperature at which that
volumetric flow rate has been measured). From
ideal gas law ρ = prefM/RTref = 0.66 kg/m3

and ṁ = 23. kg/s. Being the pipe cross sec-
tion known, G = ṁ/A = 325.38 kg/m2s. The
point of minimum pressure is at compressor inlet
(and/or at the end of the line). Therefore we im-
pose p3 = pmin = 1.5 · 105Pa, and using Bernoulli
equation for isothermal flow along a pipeline under
non sonic conditions we can calculate p2:

p2 =

√

p23 +
2flG2

D

2RT

M
= 16.14 · 105Pa (42)

Pressure at compressor outlet will be p2 = 16.14 ·
105Pa.

2. If the pipeline breaks, the gas inside the pipe at the
breaking point (pressurized at 1.5 · 105 Pa) will be
free to flow toward the outer environment, which is
at atmospheric pressure. Assuming adiabatic flow
through the broken section (adiabatic efflux of gas
from a tank) we can calculate the critical pressure
ratio (between the pressure in inside the pipe at the
breaking point, p3, and the pressure at the broken
section, pr), which is given by:

(

p3
pr

)

cr

=

(

γ + 1

2

)

γ

γ−1

= 1.89 (43)

The minimum pressure required to generate sonic
flow from the broken section is p3,min,cr = 1.89 ·
105Pa. Since the pressure in the pipe is less than
this value, the flow is sub-sonic. The specific flow
rate is given by

G = ρ1v1 = ρ1

√

2γ

γ − 1

[

p3
ρ3

− penv
ρenv

]

(44)

where ρ3 = p3M/RT , penv = 1 atm and ρenv =
penvM/RTr with Tr gas temperature at the broken
section, given by the adiabatic law. Since the gas
expands from p3, T to penv, Tr, we get pγ−1

env /T
γ
r =

pγ−1
3 /T γ. For methane (polyatomic gas) is γ = 1.33

and calculations give Tr = T (p3/penv)
(1−γ)/γ =

0.91 · T = 266 K, ρ3 = 0.72 kg/m3 from which
we can calculateG.

f.

1. Mass conservation for the gas in the tank is

MV

RT

dps
dt

= Mṅ(t) = Mṅ0 exp[kt] (45)

where the term on the RHS is the mass of gas gen-
erated by the chemical reaction. This equation can
be integrated in time from the starting condition
ps(0) = 2 atm, to derive the evolution of gas pres-
sure inside the tank:

ps(t) = ps(0) +
ṅ0RT

V k
(exp(kt)− 1) (46)

which increases exponentially. To calculate the
time before the valve opens we need to isolate t

t =
1

k
ln

(

1 +
ps(t)− ps(0)

ṅ0RT
V k

)

(47)

From problem data we get t = 18.26 s.

2. When the valve opens, the mass balance for the gas
in the tank becomes

MV

RT

dps
dt

= Mṅ(t) = Mṅ0 exp[kt]−AG (48)
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where G is the specific flow rate exiting from the
safety valve. Considering adiabatic efflux from the
tank, the critical pressure ratio between the pres-
sure inside the tank, ps, and the pressure at the
outlet section, po, is

(

ps
po

)

cr

=

(

γ + 1

2

)

γ

γ−1

= 1.89 (49)

The minimum pressure value required to produce
sonic flow is ps,min,cr = 1.89 · 105Pa. Pressure in-
side the tank at the time at which the valve opens is
15 atm > ps,min,cr therefore the flow is sonic. The
specific flow rate exiting from the valve is given by

G =
√
γpoρo =

√

γ
M

RTo
po (50)

where pγ−1
o T γ

o = pγ−1
s T γ

s from the adiabatic trans-
formation which using the critical pressure ration

we get Ts/To) = (ps/po)
(γ−1)/γ
cr = (γ + 1)/2 = 1.2.

When the valve opens we have po = 7.936 · 105Pa
and To = 250 K from which G = 3190.77 kg/m2s.
The mass flow rate exiting from the valve is ṁ =
GA = 1.59 kg/s. The pressure variation inside the
tank after the valve opens, depends on the balance
between the two mass flow rates which are opposite
in sign: the flux of gas exiting from the valve con-
tributes to pressure reduction, whereas the chemi-
cal reaction contributes to pressure increase. Based
on the mass balance we have:

MV

RT

dp

dt
= Mṅ0 exp[kt]−AK1p (51)

which should be integrated in t from p = 15 atm
when the valve opens. The differential equation is
of the type:

dp

dt
= A1 exp[kt]−A2p (52)

and its solution is the sum of one term which is
exponentially increasing (produced by the chemi-
cal reaction) and one term which is exponentially
decreasing, due to the emptying of the tank. The
solution is

p(t) = C1 exp[kt] + C2 exp[−A2t] (53)

where C1 and C2 are constants to be calculated.
Deriving the general solution we get

p(t)

dt
= C1k exp[kt]−C2A2 exp[−A2t] = A1 exp[kt]−A2(C1 exp[kt]+C2 exp[−A2t])

(54)
Equating terms containing exp[kt] we get:

C1k = A1 −A2C1 → C1 = A1/(k +A2) (55)

C2 can be evaluated imposing the starting value of
pressure (C2 = p(0) − A1/(k + A2)). The expo-
nentially growing term prevails in the short time,
leading to an indefinite pressure increase inside the
tank which can only be delayed by the opening of
the valve.

g.

1. For adiabatic efflux from the tank, the critical pres-
sure ratio between the pressure in the tank, ps, and
the pressure at the outlet section, po, is given by:

(

ps
po

)

cr

=

(

γ + 1

2

)

γ

γ−1

= 1.83 per γ = 1.33 (56)

The minimum pressure value required to have sonic
flow is ps,min,cr = 1.83 · 105Pa. Since the value of
pressure inside the tank when the efflux starts is
10 atm > ps,min,cr, the flow is sonic.

2. The specific flow rate exiting from the tank is given
by

G =
√
γpoρo =

√

γ
M

RTo
po (57)

where pγ−1
o T γ

o = pγ−1
s T γ

s from the adiabatic trans-

formation and (Ts/To) = (ps/po)
(γ−1)/γ
cr = (γ +

1)/2 = 1.165 using the critical pressure ratio. We
get po = 5.46 ·105Pa and To = 251.5 K from which
G = 1510.35 kg/m2s. The mass flow rate exiting
from the tank is ṁ = 0.474 kg/s.

3. Even when the pressure inside the tank decreases
to 3 atm, the flow is sonic. The mass conservation
for the gas in the tank is:

MV

RT

dps
dt

= −GA = −A

√

γ
M

RTo
po = (58)

= −A

√

√

√

√

γpsρs

(

2

γ + 1

)

γ+1

γ−1

(59)

from which

dps
dt

= −A

V

√

√

√

√

γ
RTo

M

(

2

γ + 1

)

γ+1

γ−1

ps = −KT ps (60)

with KT = 0.008467. Separating the variables and
integrating we get

ps(t) = ps(0) (1− exp(−KT t)) (61)

from which we can calculate the time t:

t =
1

k
ln

ps(0)

ps(t)
= 142 s (62)

4. The mass of gas discharged from the tank while the
pressure is changing from 10 atm to 3 atm is given
by

∆m = M(ni − nf ) =
MV

RTs
(ps,i − ps,f ) = 45.98 kg (63)
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h.

1. The flow rate to be transferred corresponds to
a specific flow rate equal to G = w/A =
407.43 kg/m2s. Indicating with 1 the pressure at
the upstream section of the pipeline and with 2 the
pressure at the outlet section of the line, connected
with tank B, the minimum flow rate which can be
transported as sonic flow is given by:

Gmin,cr =
√
p2ρ2 =

√

M

RT
p2 (64)

where p2 is (at minimum) that of the outer envi-
ronment, patm. We get Gmin,cr = 359.38 kg/m2s.
Since G > Gmin,cr the flow transferred will be
sonic.

2. The value of pressure at the outlet section is given
by

p2 =
G

√

M/RT
= 1.133 · 105Pa (65)

3. The pressure in the tank, which is the same as p1,
is calculated considering the critical pressure ratio
established between the upstream and downstream
sections of the pipe when the flow is sonic. From
isothermal Bernoulli equation from a pipeline under
sonic condition we get

ln
p1
p2

+
1

2

(

1−
(

p1
p2

)2
)

+ 2f
L

D
= 0 (66)

from which we can calculate the critical pressure
ratio

(

p1
p2

)II

=

√

√

√

√1 + 4f
L

D
+

(

2 ln

(

p1
p2

)I
)

(67)

Since G is known, we can calculate f using Bla-
sius equation, f = 0.079Re−0.25 = 0.0024. Ne-
glecting (initially) the logarithmic term we get
p1/p2 = 7.655 and iterating (p1/p2)cr = 7.921.
Since the downstream pressure is known, the up-
stream pressure is calculated as p1 = (p1/p2)crp2 =
8.974 · 105Pa.

4. If a leakage is produced in the tank, assuming
isothermal flow we have pA/po = e0.5 = 1.648.
The minimum value of pressure in tank required
to generate sonic flow is pA,min,cr = 1.648 · 105Pa.
Since when the leakage is produced is pA = p1 =
8.974 · 105Pa > pA,min,cr, the flow is sonic. For

sonic isothermal flow G =
√
poρo =

√

M/RTpo
where po = (p1/p2)

−1
cr pA = 5.44·105 Pa, and we get

G = 1955.06 kg/m2s and ṁ = GA = 0.614 kg/s.

i.

Assuming that pressure losses at the inlet (1) and at the
outlet (2) compared to frictional losses along the line,
pA ∼ p1 and p2 ∼ pB.

1. If viscous losses are negligible, Bernoulli equation
is:

1

2
dv2 +

dp

ρ
+ gdh = 0 (68)

which can be integrated as

v22
2

− v21
2

+ g(h2 − h1) +
RT

M
ln

pB
pA

= 0 (69)

where v2 = G/ρ2 and v1 = G/ρ1 with ρ1 and ρ2
calculated from the value of pressure in the tanks
and the value of T along the line using the gas law:

G2

2

(

RT

M

)2
( 1

p2B
− 1

p2A

)

+

+g(h2 − h1) +
RT

M
ln

pB
pA

= 0 (70)

from which G can be calculated.

2. If the viscous losses are comparable to gravitational
losses, Bernoulli equation becomes

1

2
dv2 +

dp

ρ
+ gdh = −2

f

D
v2dx (71)

Since dx = dh/cosα, being the variation of gas ve-
locity along the pipe unknown, we need to write v
as a function of G, which does not change along the
pipe. We get:

−G2 dρ

ρ
+ ρdp+ 2

f

D
G2dx+ ρ2gdh = 0 (72)

Substituting dx and dp we get:

(

− G2

ρ
+ ρ

RT

M

)

dρ = −
( 2fG2

D cosα
+ ρ2g

)

dh (73)

and by variable separation we get:

−G2/ρ+ ρRT/M

2fG2/D cosα+ ρ2g
dρ = −dh

or

f(ρ) · dρ = −dh . (74)

The integral can be solved decomposing the func-
tion f(ρ) into factors, being the degree of the nu-
merator less than the denominator. This function,
once integrated, allows to calculate the value of G
transferred between the two tanks.
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j.

1. To calculate the flow rate exiting at starting time
from the well, we need to find the value of the spe-
cific flow rate G. The pressure in the well is high
enough to suppose sonic flow condition, neverthe-
less is possible to check if this is true a priori con-
sidering that:

• since the line is long, the pressure drop be-
tween the tank outlet and the pipe inlet is
negligible compared to the pressure drop along
the line (p0 ≃ p1);

• for isothermal flow and sonic flow, the critical
pressure ratio between the pressure upstream,
p1, and downstream the line, p2, is given by

ln
p1
p2

+
1

2

(

1−
(

p1
p2

)2
)

+ 2f
L

D
= 0 (75)

This equation can be iteratively solved if geo-
metrical data of the pipeline are given assum-
ing a value for the friction coefficient f (e.g.
f = 0.003)

(

p1
p2

)I

=

√

1 + 4f
L

D
(76)

(

p1
p2

)II

=

√

√

√

√1 + 4f
L

D
+

(

2 ln

(

p1
p2

)I
)

(77)

which after a few iterations gives (p1/p2)cr =
10.08. Using this value we can check is the flow
is sonic at starting time, since the minimum
value of pressure in the well required to gen-
erate sonic flow is p0,min,crit = 10.08 patm =
10.08 · 105Pa. At starting time we have p0 =
25 · 105Pa > p0,min,crit, therefore the flow is
sonic.

Since the flow is sonic, the specific flow rate exiting
from the well depends on conditions establishing at
the pipeline outlet section, which differ from those
in the outer environment but are linked to the pres-
sure inside the well by the critical pressure ratio.
We get

G =
√
p2ρ2 =

√

M

RT
p22 =

√

M

RT
p2 (78)

where the ideal gas law has been used to express ρ2
and p2 at the outlet section, and we used the critical
pressure ratio to relate the pressure upstream and
downstream the pipe:

G =

√

M

RT

(

p1
p2

)

−1

crit

p1 = K1p1 (79)

From this equation we calculate G =
635.62 kg/m2s, and the mass flow rate is
ṁ = G ·A = 4.99 kg/s.

2. The pressure inside the well when the well starts
discharging natural gas is given by

p2(0) =

(

p1
p2

)

−1

cr

p1(0) = 2.48 atm (80)

which is larger than the value required to trans-
fer the desired flow rate. The laminarization valve
installed on the line will be used to generate addi-
tional pressure loss reducing the pressure at the end
of the line from 2.48 atm to the desired value until
this will be necessary, i.e. until the pressure in-
side the well will decrease to the minimum value of
pressure able to transfer the desired flow rate. The
time to exhaustion of the well is given by the value
of pressure for which gas flowing to the well head
reaches 1.5 · 105 without valve regulation (laminar-
ization valve completely open). The specific flow
rate in this condition is subsonic and given by:

Gmin,crit =

√

M

RT
patm = 256.28 kg/s (81)

and the pressure at the upstream section of the
pipe is (using isothermal Bernoulli equation along
a pipeline under non sonic condition)

G2 ln
p1
p2

+
M

2RT

(

p22 − p21
)

+
2fL

D
G2 = 0 (82)

Neglecting the logarithmic term and solving for p1
being p2 = 1.5 atm and G = 180 kg/s known.
This value of p∗1 identify the last time at which the
desired flow rate can be extracted from the well.
Assuming that the flow rate exiting from the well
has been continuously regulated by the valve to the
desired constant value, the time to exhaustion of
the well is given by:

dp1
dt

= − RT

MV

πd2

4
G (83)

∫ p∗

1

p1(0)

dp1 = − RT

MV

πD2

4
Gt∗ (84)

from which we get

t∗ =
4MV (p1(0)− p∗1)

πD2GRT
(85)

k.

1. The mass balance for the gas contained inside the
tank gives

dm

dt
=

VM

RT

dp0
dt

= −AG (86)
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This equation can be integrated once the right ex-
pression for G is selected, depending on the flow
regime (sonic or sub-sonic). The pressure inside the
tank (1 MPa = 10 atm) seems to be large enough
to assume sonic flow. However, we can check a
priori if this is true: for isothermal flow along a
line and sonic condition, the critical pressure ra-
tio between the pressure upstream, p1 ≃ p0, and
downstream the line, p2, is given by

ln
p1
p2

+
1

2

(

1−
(

p1
p2

)2
)

+ 2f
L

D
= 0 (87)

This equation can be solved iteratively if we know
the pipeline geometry and assume a trial value for
the friction factor f (e.g. f = 0.003):

p1
p2

I tent
=

√

1 + 4f
L

D
(88)

p1
p2

II tent
=

√

1 + 4f
L

D
+ 2 ln

p1
p2

I tent
(89)

p1
p2

III tent
=

√

1 + 4f
L

D
+ 2 ln

p1
p2

II tent
(90)

... (91)

(92)

After a few iterations we get

p1
p2 crit

= 3.97 (93)

which indicates that the flow will be sonic until the
pressure inside the tank is larger (or equal) than
p∗1 = 3.97patm. This value gives the lower integra-
tion limit necessary to find the time f duration of
the sonic flow. To integrate the equation 97 we
should use the right expression for G which is:

G =
√
p1ρ1 (94)

where p2 and ρ2 are conditions establishing at the
outlet section of the pipe, which are linked to con-
ditions at the upstream section of the line through
the critical pressure ratio,

G =

√

M

RT
p22 =

√

M

RT
p2 = (95)

=

√

M

RT

(

p1
p2

)

−1

crit

p1 = K1p1 (96)

The mass conservation equation becomes

VM

RT

dp1
dt

= −AK1p1 (97)

which can be integrated as

∫ p∗

1

p1(0)

dp1
p1

=
AK1RT

MV
t (98)

from which

t = ln
p1(0)

p∗1

MV

AK1RT
(99)

2. If the tank discharges directly into the environ-
ment, the specific flow rate G changes because con-
ditions establishing at the outlet section changes.
Specifically, starting again from Bernoulli equation
written for the emptying tank assuming isothermal
transformation, we get that at sonic flow condition

(

p2
p1

)

crit

= ln 2 = 0.69 (100)

In the mass conservation equation we need to
change:

• the upper integration limit p∗1 = patm/0.69

• the value f the constant K1, which includes
the new value of the critical pressure ratio.
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