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Sub-critical and critical flow conditions

a.

Consider a tank (volume V , pressure p0 and temperature T0) filled with gas (molar mass M , ratio of specific heat
evaluated at constant pressure and at constant volume given by γ = cp/cv) able to discharge the gas trough a nozzle
(diameter d) to a receiving environment (outer pressure penv).

1. Derive the relation between pressure inside the tank and in the outer environment and specific flow rate G
discharged from the nozzle if viscous losses can be neglected. Assume reversible abiabatic expansion for the gas
(p/ργ = C).
Efflux of gas from the tank is described by mass conservation:

dm

dt
= ṁin − ṁout (1)

where ṁin = 0 in this case. The mass of gas inside the tank is given by:

m = n0M = M
p0V

RT0

(2)

where n0 is the number of moles which, according to the ideal gas law, is a function of pressure (p0), temperature
(T0) and volume of the tank through the universal gas constant R = 8314 J/Kkmole. Assuming T0 = const
inside the tank (the volume and heat capacity are large enough to be unaffected by thermal variations induced
by the efflux of gas), the variation of mass becomes:

dm

dt
=

MV

RT

dp0
dt

= −ṁout (3)

where the outgoing mass can be conveniently expressed as ṁout = A ·G where G = ρ1v1 is the specific mass flux
at the nozzle section and A = πd2/4 is the nozzle area. We can use Bernoulli equation written in differential
form:

d

(

v2

2

)

+ gdh+
dp

ρ
= dws −

dlv
ρ

(4)

which once integrated between a position 0 inside the tank and the nozzle section 1, gives:

v21
2

+

∫ 1

0

dp

ρ
= 0 (5)

To simplify Bernoulli equation we assumed that in the system considered (i) the gravitational term is negligible
(there is no significant change of density with height between point 0 and 1 in the system considered); (ii) no
energy is given to the fluid; (iii) negligible viscous losses; (iv) negligible gas velocity inside the tank. To solve
the integral for the pressure term, we write ρ = (p/C)1/γ according to the adiabatic transformation we assume
to hold between point 0 and 1:

∫ 1

0

dp

ρ
=

∫ 1

0

C1/γ

p1/γ
dp = C1/γ

∫ 1

0

p−1/γdp = C1/γ 1

− 1

γ + 1

[

p−
1
γ
+1
]1

0

= C1/γ γ

γ − 1

[

p
γ−1

γ

1 − p
γ−1

γ

0

]

(6)

Considering the value of C1/γ = p
1/γ
1 /ρ1 = p

1/γ
0 /ρ0, we get

∫ 1

0

dp

ρ
=

γ

γ − 1

[(

p
1/γ
1

ρ1

)

p
γ−1

γ

1 −
(

p
1/γ
0

ρ0

)

p
γ−1

γ

0

]

=
γ

γ − 1

[

p1
ρ1

− p0
ρ0

]

(7)

from which we calculate:

v1 =

√

2γ

γ − 1

[

p0
ρ0

− p1
ρ1

]

(8)
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The specific mass flow rate is given by:

G = ρ1v1 =

√

2γ

γ − 1
ρ21

[

p0
ρ0

− p1
ρ1

]

(9)

and if we use again the relation ρ1 = (p1/C)1/γ , we get:

G(p0, p1) =

√

2γ

γ − 1

(p1
C

)2/γ
[

p0
ρ0

− p1
ρ1

]

=

√

√

√

√

2γ

γ − 1

1

C2/γ

[

p0
ρ0

p
2/γ
1

− p
2/γ
1

p1

p
1/γ
1

C1/γ

]

= (10)

=

√

2γ

γ − 1

1

C2/γ

[

p0
ρ0

p
2/γ
1 − C1/γp

1+2/γ−1/γ
1

]

=

√

2γ

γ − 1

1

C2/γ

[

p0
ρ0

p
2/γ
1 − C1/γp

1+1/γ
1

]

(11)

If we consider p0 in the tank fixed, the specific mass flow rate is a function of p1 only. The pressure at the
nozzle exit can change in the range [penv : p0] with penv arbitrary small (up to 0). In general, we can assume
that the pressure at the nozzle exit p1 will not be different from penv: any variation of pressure in the outer
environment propagates at the speed of sound in any surrounding direction. If penv = p1 = p0 (no pressure
difference between one point inside and one point outside the tank) G(p1) = 0 (no flow through the nozzle). If
penv = p1 = 0, G(p1) = 0 since ρ1 = 0 at p1 = 0. Therefore, G(p1) is positive definite in the range, and has null
values at the upper and lower end of the interval. According to Weirstrass theorem, G(p1 has a maximum in
p1 = [0 : p0]. To find this maximum we derive G(p1) with respect to p1:

dG(p1)

dp1
= 0 (12)

or, which is the same, we can derive the function of p1 which is the argument of the square root:

d

dp1

[

p0
ρ0

p
2/γ
1 − C1/γp

1+1/γ
1

]

= 0 (13)

which gives

p0
ρ0

2

γ
p
2/γ−1

1 − C1/γ 1 + γ

γ
p
1+1/γ−1

1 =
p0
ρ0

2

γ
p

2−γ

γ

1 − C1/γ 1 + γ

γ
p
1/γ
1 = 0 (14)

and finally

p0
ρ0

2

γ
p

2−γ−1

γ

1
= C1/γ 1 + γ

γ
(15)

p0
ρ0

2

γ
p

1−γ

γ

1 =

(

p
1/γ
0

ρ0

)

1 + γ

γ
(16)

and after further simplification

2

1 + γ
p

1−γ

γ

1 = p
1−γ

γ

0 →
(

p1
p0

)

CRIT

=

(

1 + γ

2

)

γ

1−γ

=

(

2

1 + γ

)

γ

γ−1

(17)

(p1/p0)CRIT identifies the condition in which G is maximum; it is function of γ only and therefore is a con-
stant value. For a bi-atomic gas, γ = 1.4 and (p1/p0)CRIT = 0.528. For a mono-atomic gas, γ = 5/3 and
(p1/p0)CRIT = 0.487.

At this condition, the velocity at the nozzle is given by:
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v1 =

√

2γ

γ − 1

p0
ρ0

[

1− p1
p0

ρ0
ρ1

]

(18)

and substituting the pressure ratio and density ratio

p1
p0

=

(

2

1 + γ

)

γ

γ−1

and
ρ1
ρ0

=

(

p1
p0

)1/γ

=

(

2

1 + γ

)
1

γ−1

(19)

we obtain:

v1 =

√

√

√

√

2γ

γ − 1

p0
ρ0

[

1−
(

2

1 + γ

)

γ

γ−1
(

2

1 + γ

)

−1

γ−1

]

=

√

2γ

γ − 1

p0
ρ0

[

1− 2

1 + γ

]

= (20)

=

√

2γ

γ − 1

p0
ρ0

(

γ − 1

γ + 1

)

=

√

2γ

γ + 1

p0
ρ0

=

√

2γ

γ + 1

RT0

M
(21)

Considering that for the adiabatic transformation we have also a relationship between temperature and pressure:

C =
p

ργ
=

pγ

ργ
p1−γ =

(

RT

M

)γ

p1−γ → C′ =
T γ

pγ−1
(22)

we can relate T1 with T0 inside the tank

T0 = T1

(

p0
p1

)

γ−1

γ

=

(

2

1 + γ

)

−
γ

γ−1

γ−1

γ

=
1 + γ

2
(23)

to rewrite the velocity at nozzle outlet as:

v1 =

√

2γ

γ + 1

RT1

M

1 + γ

2
=

√

γ
RT1

M
(24)

The right end side of Equation 24 is the speed of sound at adiabatic conditions evaluated at the nozzle outlet.
Since the velocity of the gas at nozzle outlet becomes equal to the sound speed when G is maximum, we conclude
that if we reduce further penv, there is no possibility for the pressure wave carrying this information of “pressure
decrease” to propagate deep into the tank because the gas is moving out of the tank at the same velocity. No
further change in the pressure at the nozzle outlet will be produced by a reduction in penv and the value of G
will maintain equal to the maximum.

2. Derive the formula for the specific mass flow rate at critical conditions as a function of pressure inside the tank.

From Equation 24 we calculate

G = ρ1v1 =

√

γ
RT1

M
ρ21 =

√
γp1ρ1 =

√

γ
M

RT1

p21 =

√

γ
M

RT1

p1 (25)

Using Equation 17 for p1 we end up with

G =

√

γ
M

RT1

(

p1
p0

)

CRIT

p0 = k · p0 (26)

and using Equation 23 we find

G =

√

√

√

√

γ
M

RT0

(

p0
p1

)

γ−1

γ

CRIT

·
(

p1
p0

)2

CRIT

p0 =

√

√

√

√

γ
M

RT0

(

p1
p0

)2−
γ−1

γ

CRIT

· p0 =

√

√

√

√

γ
M

RT0

(

2

γ + 1

)

γ+1

γ−1

· p0 (27)

where k = f(T0). Under critical conditions:
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• the specific mass flow rate is (only) function of T0, p0 inside the tank;

• G is linearly proportional to the pressure inside the tank, p0;

• the pressure at the nozzle outlet p1 is proportional to the pressure inside the tank, p0:

p1 =

(

p1
p0

)

CRIT

p0 (28)

and can be different (larger) than the pressure in the outer environment penv;

• downstream the nozzle outlet, the gas expands from p1 to penv in the outer environment.

3. Derive the relation between pressure inside the tank and in the outer environment and specific flow rate G
discharged from the nozzle if viscous losses can be neglected. Assume isothermic transformation for the gas
(p/ρ = C) between one point inside the tank and the nozzle outlet. Which is the critical pressure ratio in this
case?

4. Derive the relation between pressure inside the tank and in the outer environment and specific flow rate G
discharged from the nozzle if viscous losses can be neglected. Assume polytropic transformation for the gas
(p/ρk = C) between one point inside the tank and the nozzle outlet. Which is the critical pressure ratio in this
case?
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